4. Three different processes that can occur in an ideal monoatomic gas are shown in the P vs V diagram. The paths are lebelled as A→B, A→C and A→D. The change in internal energies during these process are taken as E_{AB}, E_{AC} and E_{AD} and the workdone as W_{AB}, W_{AC} and W_{AD}. The correct relation between these parameters are:

[Main 5 Sep. 2020 (I)]

- (a) $E_{AB} = E_{AC} < E_{AD}, W_{AB} > 0, W_{AC} = 0, W_{AD} < 0$
- (b) $E_{AB} = E_{AC} = E_{AD}, W_{AB} > 0, W_{AC} = 0, W_{AD} > 0$
- (c) $E_{AB} < E_{AC} < E_{AD}, W_{AB} > 0, W_{AC} > W_{AD}$
- (d) $E_{AB} > E_{AC} > E_{AD}, W_{AB} < W_{AC} < W_{AD}$
- ans (b) Temperature change ΔT is same for all three processes

$$A \rightarrow B$$
; $A \rightarrow C$ and $A \rightarrow D$

$$\Delta U = nC_{\nu}\Delta T = \text{same}$$

$$E_{AB} = E_{AC} = E_{AD}$$

Work done, $W = P \times \Delta V$

 $AB \rightarrow \text{volume is increasing} \Rightarrow W_{AB} > 0$

 $AD \rightarrow \text{volume is decreasing} \Rightarrow W_{AD} < 0$

 $AC \rightarrow \text{volume is constant} \Rightarrow W_{AC} = 0$